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9.1. INTRODUCTION

This chapter sets forth a design for a system whose purpose is to discover
temporal and spatial regularities in a high-dimensional environment. Whereas the
goal of this research is the realization of an ‘‘intelligent system,’’ the model is
based on principles of organization and self-modification widely believed to be in
force in the nervous system. The design is of a parallel-processing machine
composed of nonlinear and highly interconnected devices. As it is presented
here, the model is a general one in the sense that it is not dedicated to any
particular environment or task. A specific implementation of the model requires
the specification of two sets of parameters: the ‘‘input primitives’’ and the
‘‘direction primitives.’’ The input primitives represent the information about the
environment that is available to the system. The direction primitives define what
is *‘good’’ and what is ‘‘bad’’ relative to the system.

It may help to orient the reader if I briefly describe a particular implementa-
tion of the model that is now being developed. In this implementation the envi-
ronment is the world of numbers, leading to input primitives such as odd, even,
prime, sum, exponentiate, etc. Direction primitives specify that a non sequitur,
such as attempting to perform a binary operation with only one available argu-
ment, is bad, that a conjecture that is well supported (as by trial and error) is
good, and so on. The system interacts with a computer, requesting numbers and
the results of operations, and attempts to discover regularities among these primi-
tives.

Whereas it is my position that the principles of organization and modification
used here are in force in the nervous system, I do not propose that this implemen-

237



238 GEMAN

tation mimics, in any specific sense, the techniques of a mathematician. This
implementation is meant as an exercise toward developing a system that can
discover regularities in complicated environements. The point of using numbers
is that they provide an extremely convenient world in which to experiment, but
the model is in no way dedicated to this world. In fact the presentation in this
chapter will rarely refer to this implementation because it is not yet complete and
there are few results to report. :

Humans learn, and learn to discover, regularities in the complex and high-
dimensional environments of the ‘‘real world.’” We cannot reasonably expect to
invent another solution to this inference problem, at least not one that will
approach the general application of human thought. Therefore it would seem to
be expedient to look to the neural and cognitive sciences for clues about the

.proper architecture, and it is in this spirit that the model here has been developed.
However, [ am not proposing this model as a ‘‘neural network’’ model. It will be
clear to the reader with even a rudimentary knowledge of neurophysiology and
neuroanatomy that the basic units of information processing used here have little
to do with real neurons. In fact I will completely ignore the problem of realizing
these units in neurallike machinery, because I do not believe that the specifica-
tion of such a realization would at this time be a useful exercise. Models have
been formulated at the level of neural structure for the realization of a variety of
‘‘higher-level’” functions presumed to be carried out by some part of the nervous
system. Yet we can seriously question whether these models have improved our
understanding of human intelligence. The real problem may lie in identifying
which functions to realize. We can imagine numerous architectures of nonlinear
neuronlike elements, communicating through modifiable connections, for the
execution of virtually any well-specified procedure of information processing.
But it would be difficult to choose between these architectures based on what
little is known of the physiology of higher-level function in the nervous system.
The right question now may be what to build rather than how to build it.

A problem that is fundamental to our understanding of the nervous system,
and one that has implications for the design of Artificial Intelligence, is the
proper interpretation of ‘‘local’’ activity in the brain. Many authors have argued
that little significance can be attached to activity at any particular location; it is
the pattern of activity across a neural system that embodies the system’s interpre-
tation of a stimulus. This point of view arises mainly as a corollary of the
distributed memory hypothesis, which has its roots in the classical experiments
of K.S. Lashley (1950). Others have taken the point of view that local activities
have a very specific and often ‘‘high-level’” interpretation. An often quoted
paper by H. B. Barlow (1972) argues for the existence of ‘‘grandmother cells,”
whose activities signal the presence of specific stimuli, such as chairs, cars, or
particular individuals. The semantic net approach to Artificial Intelligence can be
interpreted in this way (see Fahlman, Chapter 5, this volume) if an individual
node representing a specific concept, pattern, or operation is identified with an
individual hardware unit. )
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The present model is based on the proposition that both interpretations are, at
once, in force. It may be useful to anticipate now the discussion in this regard by
outlining an argument for this point of view. It is well demonstrated that the
efficacy of synaptic connections can be influenced by the activities of the neurons
that communicate through these connections (see discussion in Chapter 1, this
volume). It is just such changes that most investigators see as the
neurophysiological analog of associative learning. Let us accept the point of view
that synapses are, indeed, the site of the engram and that modification of
synapses can be described by some function of the presynaptic and postsynaptic
activities. Then, at any stage in development, what has been learned can depend
only on pairwise relations among the activities of individual neurons. Suppose
that these neuronal activities are at all levels as unselective, in terms of ‘‘events’’
and ‘‘objects,’’ as the activities at the most peripheral levels. It is then difficult to
see how a synaptic memory, based only on pairwise associations, could contain
information about highly complex and specific relations among these events and
objects, as the human memory most certainly does. It would seem that activities
in some neurons need to signal selective events rather than a noninformative
mixture that occurs as frequently as the primitives themselves.

It is widely believed that ontological development includes a process by which
some cells of the visual cortex, initially not completely specific in their activities,
come to signal selective events, or ‘‘features,’’ in the environment. Many inves- -
tigators have suggested that this process continues, in a hierarchical fashion, as
one moves to deeper levels of processing in the brain. The system described in
this chapter utilizes just such a process to create local activities that signal
selective events. Of course, care must be taken as to which events are to be
represented because we cannot possibly represent all such ‘‘high-order’’ relation-
ships in an environment that has any appreciable number of dimensions. The
precise mechanism used is described in some detail in the sections to come. The
point that I wish to make here is that, as a result of this process, a familiar event
achieves both distributed and local representation. The representation is distrib-
uted at the most peripheral levels, where the event is signaled by the activities in
a particular set of primitives, whereas this representation is increasingly localized
as we move deeper into the system. It will be seen that the model here continues
to utilize all levels of this representation.

Whereas the presentation here is about the design of a system for the organiza-
tion of information in complex environments, behind this design there is a model
for the nature of the information to be processed. I begin in Section 9.2 with an
attempt to identify some salient features of real-world environments, and this
discussion guides the development of the system as it follows in later sections.
Mechanisms for the associative learning and associative recall of spatial' rela-
tions are described in Section 9.3. It is these mechanisms that suggest the local/

t“‘Spatial’’ refers here to associations among events that occur simultaneously. It is not in specific
reference to visual.
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global representation scheme referred to earlier. I argue that an associative pro-
cess will be effective provided that both forms of representation are available.
Section 9.4 then outlines the means by which the system develops this repre-
sentation. It may be seen that this is dependent on the particular experience of the
network. The pieces, as they have been described up to this point, are then
brought together in Section 9.5. The result is what I will call a spatial coding
module, one of the three building blocks of the system. Temporal relations are
organized and leamed by a very similar structure called a temporal coding
module, which is the topic of Section 9.6. The principles of architecture and
function developed for the two types of coding modules are then applied to the
problem of organizing and integrating the actions of the entire system. The
result, a control module, is the main topic of the final section, Section 9.7.
Scattered through the atricle are 11 propositions. These statements are intended
as informal summaries of the main assumptions on which the design is
based.

I do not attempt to describe the system in full detail. Certainly this would be
premature. The current implementation already suggests changes in many of the
particulars. Still we do expect, and have so far been able, to maintain the
essential principles of organization as they are presented in this article.

Finally, let me anticipate two likely, and largely valid, criticisms—first, that
the difficult problem of extracting appropriate primitives in real environments
has been completely ignored. Perhaps an understanding of what to do with these
primitives at “‘higher’’ levels will point to an understanding of what constitutes
good peripheral machinery. It is possible that the peripheral hardware problem
will prove to be more difficult than the probiem of higher-level intelligent pro-
cessing. A second objection is that the idealizations are absurd and that time and
features do not have discrete representations in the nervous system. The model
here has its generalizations to continuous time and continuous features. The
philosophy is to work with a system that can be analyzed and simulated with
relative ease and hope that it will suggest the correct generalizations.

9.2. ON THE NATURE OF ENVIRONMENT

This chapter proposes a mechanism for organizing the information of real-world
environments, and this mechanism reflects a particular point of view concerning
the nature of such information. This section is devoted to a discussion of the
assumptions that comprise this point of view. This may appear to be a circuitous
route to a description of the system, but the design of this system is, in large
measure, based on the formulation developed here.

It is best to start with a discussion of features because it is the purpose of the
system to learn relations among features. Actually a precise definition evolves
from the description of the design, but for now we can think of a feature in pretty
much the conventional ‘‘pattern recognition’” sense: Features describe the status
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(present or absent, present in what form or to what degree, etc.) of specific
events in the system’s environment. Mostly, I refer to “‘high-level’’ features.
These may, for example, signal specific words, objects in a visual scene, or in
medicine the outcome of a diagnostic test. Of course something must be said
about the development of high-level features from more primitive features, but a
discussion of this aspect of the model is better motivated later. The notion of a
feature also includes representations of ‘‘actions,’” analogous to the way in
which proprioception represents motor activity as part of our sensory environ-
ment. From this point of view learning the consequences of certain actions under
certain circumstances is a special case of learning relations among features, for
the consequences, the actions, and the circumstances all have a common repre-
sentation. A good analogy to the ‘‘feature’’ defined here is the ‘‘cogit’’ of the
Hayes-Roth (1977) theory.

The values of features form a representation of the system’s environment. It is
natural to think of all these values as being available at each instant, and this
point of view is implicit in the pattern recognition formalism and in many of the
current models of memory. The design here is based on a different point of view,
one which explicitly recognizes the existence of an ‘‘unobserved’’ state, in which
the value of a feature is not available. In a cognitive sense it is clearly not the case
that at each instant every feature is examined or appreciated. At any instant we
are unaware of most of the complement of sensory information potentially avail-
able. Also, features may be unobserved because their values are physically not
available. We recognize words with just a subset of the acoustic information that
we are capable of using, as when listening over a telephone. A good example, at
a higher level, is the result of a test in diagnostic medicine. If the test is not
performed, then we have no value for the feature that is the test result. If the test
is performed, then we observe this feature, and it may be positive or negative or
possibly any of a continuum of values.

My point is that features come in two states: observed and unobserved. The
value of a feature is available only when the feature is in the observed state. The
unobserved state generally carries little or no information. This distinction be-
tween the observed and unobserved states of a feature is the basis for a definition
of ‘‘associative recall.’” Roughly, associative recall in this model is a process of
predicting, or ‘‘filling in,’” the values of certain unobserved features. These
statements lead then to the first proposition:

Proposition 1. The processing of a feature distinguishes two states: observed
and unobserved. In the observed state the value of the feature is available. In the
unobserved state this value is not available. In itself the srare of a feature
contains little information.

As a first approximation I usually assume that the state of features carry no
information with respect to the values of features: The states and values of
features are independent.
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It is obvious that memory would have no purpose if past experiences could not
be taken as evidence towards a correct interpretation of future experiences.
Plainly there is a relationship between past observations and the course of events
in the future. I have used a2 model of this relationship to guide the design of the
system presented here. Formally this is a Bayesian model, in which the prior
distribution (which is only partly specified) is on distributions among features.
To speak loosely, the prior determines what relations among features we are
likely to encounter. This approach/ has the advantage that it easily translates
assumptions about the nature of evidence into precise statements about the prior
distribution. In theory this precision should in turn dictate the details of
mechanisms for the processing of information by the system. In fact what I have
is only a heuristic connection between the system and this Bayesian model.
Therefore I replace a formal description of this model with a looser, more
intuitive discussion of its main assumptions.

In this model, the ‘‘environment’’ is a vector-valued random function of
(discrete) time.? The components of this vector are the features, and the prior
distribution is a distribution on the probability law for this process. The most
complete possible observation is of the entire vector,

H@, ... faD),

where f; (f) is the value of the ith feature at time . If we use *“?’ to indicate an
unobserved feature, an actual observation looks like

fl (t)’ f2 (t)) ?’ ?, ?: olg "fk (t)s ?s' O "fn (f),

for example. It is assumed that the ?s contain no information about the values of
the unobserved features.

There are three main assumptions about this process, and these are formulated
as conditions on the prior distribution. These are the assumptions of constancy,
continuity, and consistency. Constancy demands that the rules do not change:
The process is stationary. If the rules appear to change, then it is because context
has changed or because associations were by chance. Memory would serve no
purpose in an environment that did not respect some measure of stationarity.
(Actually I assume something stronger—a type of ergodicity or mixing to insure
convergent behavior of certain estimators introduced later.) By continuity I
mean, roughly, that similar events tend to have similar implications. Of course
this “‘rule’” is not absolute; but it tends to be true; and this is exactly the notion
that the Bayesian formulation captures.

It should be easy to appreciate that something like constancy and continuity is
in force in the real world. Indeed it is difficult to imagine a model for a learning

*The reader unfamiliar with probability theory is cautioned against interpreting ‘‘random’” as
meaning ‘‘unstructured.’’ Indeed a deterministic model is an example of the more general probabilis-
tic approach.
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system that would not anticipate, implicitly, these conditions. Certainly there is a
good deal more regularity in real environments. We find evidence in our experi-
ence for novel circumstances, and neither constancy nor continuity can account
for this. It is easier to learn the diagnosis of a new disease if we are already
familiar with" other diseases. Why should this be true? The world of medicine
allows us to utilize what we have already learned about the relations among
symptoms in the context of this new disease. Thus the disease’s manifestations
can be largely inferred from only a partial description of its symptomatology.
Roughly, consistency is the assumption that there is an environmental analog to
the perceptual process of ‘‘filling-in’’ and the cognitive process of “‘stringing
together associations’’:

Proposition 2. The probabilistic relations among features are consistent: It is
more likely that A will be evidence for C when A is evidence for B and B is
evidence for C.

This proposition may appear so natural that it involves no assumption at all. But
the world need not have this property. Given a precise formulation of Proposition
2, it is not hard to demonstrate models that violate consistency. And; as a
corollary, a learning machine can fail to take advantage of this presumed regu-
larity.

As a simple example of a world that has the properties of constancy, con-
tinuity, and consistency, consider the ‘‘circles world,”’ constructed as follows
(see Fig. 9.1). Each feature in this world is associated with a circle on the unit
torus. These circles are chosen, independently and once and for all, by first
randomly choosing a center from the uniform distribution of the torus, and then
randomly choosing a radius from some fixed distribution. Features are binary
valued, with values + and — indicating the regions inside or outside of the
associated circles. The choice of which value will indicate which region is made
independently for each feature by a (fair) coin flip. Hence each feature is an
independently generated binary-valued function defined on the unit torus. If we
now put a uniform probability distribution on this torus, then the features can be
viewed as random variables on the resulting probability space. Notice that these
are not, in general, independent random variables. (In Fig.’9.1, for example, f,
= + implies, deterministically, f; = — ; f, and f; are certainly not independent
random variables.) >

The process, (fi(£). ..., fu(t), t=1,2, ... is generated by first choosing a
sequence of independent points, one for each f, on the unit torus using the
uniform probability distribution. The values of the features at a given time are
then determined by the position of the corresponding point. The observed process
is generated at each time, ¢, by flipping independently for each feature, a (possibly
biased) coin, and entering ‘*?”’ (unobserved) if the result is heads or the value of
the feature if the result is tails.
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FIG.9.1. A *‘circles world”" with 3 features. The surface is a torus: sides 1 and 3
and sides 2 and 4 are identified.

It is clear that the condition of independence between the unobserved state and
the values of features is satisfied. It is also true that the circles world satisfies the
conditions of constancy, continuity, and consistency. I have found this structure
to be a useful conceptual tool as well as a convenient device for creating simu-

lated environments in which to test some of the leamning and recall algorithms
described in later sections.

8.3. ASSOCIATIVE LEARNING AND RECALL

Begin with an idealization: Features are to be taken as binary valued. By almost
any interpretation, features in fact have many-valued, or continuous-valued,
representations in the brain. But it is unlikely that the transition from *‘feature
present’’ to *‘feature present at a particular strength or value’’ is fundamental. In
fact, I believe that the binary idealization. because of its simplicity, can often
“‘clear the air,”” and suggest the proper generalization to a continuous formaliza-

tion. In any case, most of what is developed has a natural analog for continuous-
valued features.
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Features, for now, may be at any level of the cognitive hierarchy. They may
represent phonemes, edges, words, diagnostic symptoms, or even phrases or
thoughts. Section 9.4 attempts to make the connection from primitive to high-
level feature. But for now, let us take features as fixed and given, and concen-
trate on the problem of learning and retrieving their interimplications.

Binary features can be thought of as indicating the presence or absence of
some event. As proposed in the previous section the point of view here is that
most of the features are most of the time unobserved; there is no direct informa-
tion available on the presence or absence of the related event. Within this for-
malism recall has the natural interpretation of being a process by which the
values of certain unobserved features are filled in (estimated). I am not suggest-
ing that all unobserved features are estimated. Circumstances will define a
collection of ‘‘target’” features whose values are of particular importance at a
particular time. In short:

Proposition 3. The purpose of recall is to estimate the values of a particular
set (target set) of unobserved features.

We may think of each target feature as a classification. In the binary formalism,
for each target feature, recall performs a two-way classification of the observed
features, with the categories being the presence or absence of the event as-
sociated with that target feature.

A target feature in medicine might be a particular disease. The observed
features correspond to observed symptoms (which may be ‘‘observed’’ to be
present or absent) or to the results of completed tests. Estimating the values of the
target features corresponds to establishing which diseases are present and which
are not. Or, given the presence of a disease, certain symptoms may play the role
of target features. Given ischemic heart disease, do we expect blockage of a
particular coronary artery; do we expect hypertension; etc.? In vision we might
think of the ““label’” as the natural target feature, given the image of an object (a
collection of observed features). Or, with a partial observation of an object, we
might think of the target features as being those unobserved features that are
ordinarly associated with that object. In mathematics, concerning numbers, we
may observe a set of features that define the event ‘‘odd plus odd’’ and wish to
estimate the value of the target feature ‘‘even’’—is it present or absent?

Target features are estimated using the information available: the values of the
observed features. The straightforward approach is to estimate, individually, the
value of each target feature using knowledge, from experinece, of the associa-
tions between the observed and target features. This procedure has no limitation
if an infinite time of experience is available. The complete statistics between the
observed and target features can then be known and an optimal (whatever the
criterion) estimator constructed. But experience is finite, and in the most interest-
ing cases, brief; an effective algorithm will anticipate certain structures. What
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sort of relations do we expect to find? In the language of Section 9.1, I am
referring to the prior distribution, which determines what worlds we are likely to
encounter and about which we have made certain assumptions. Here the relevant
assumption is consistency, which suggests that a recall algorithm take advantage
of, in a particular way, experience conceming certain of the unobserved features.

If cigarette smoking usually contributes to cardiovascular disease, and car-
diovascular disease usually shortens life span; then, with everything else being
equal, we take it for granted that cigarette smoking is likely to shorten life span. I
want to emphasize that this does indeed involve an assumption; a prior distribu-
tion can be constructed so that such reasoning will prove unprofitable, or if we
wish, always fail.

Let us suppose that we have defined a “‘local’” mechanism for generating an
opinion about the value of any particular unobserved feature given an arbitrary
collection of observed features. One such mechanism will be discussed in detail
presently. For now assume that it is available. Consistency suggests the follow-
ing mechanism for obtaining the values of the target features: First, fill in those
unobserved features about which the local algorithm has a “‘strong opinion,”’
strong being defined with respect to some threshold value. If the target features
are among these estimated features, then the procedure terminates. If not, then
utilize the augmented set of observed features (truly observed plus filled-in
features) to fill in another generation of unobserved features. Continue until
either the target features are filled in or the process terminates by virtue of no
further opinions having strength above threshold. In case of the latter, start again
with a lower threshold. This is ‘‘associative recall,’’ as it is defined in this
model. Thus:

Proposition 4. Call a feature decided if it has been observed or its value has
been estimated (filled in). The values of the target features are estimated by a
recursive process that terminates when all target features are decided. A step in
this recursion is the calculation of an opinion conceming the value of each
undecided feature using the (observed and filled-in) values of the decided fea-
tures. If, for a particular undecided feature, the opinion is above a threshold
value, then this feature is filled in and becomes decided.

The relation of this model for recall to the notions of consistency and associa-
tive memory is clear. Loosely speaking, if 4 is associated with B and B is
associated with C, then we come to associate A with C through the progression
A—>ANB—> AN BN C, and furthermore the world is such that this
association is usually appropriate.

(An appealing alternative way to incorporate information gained about the
unobserved features in the estimation of target features is the ‘‘projection
method’’: Experience is used to construct the projection operator onto the space
spanned by that experience. The response to a stimulus is the action of this
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operator on that stimulus, and this action selects a combination of experience
“close’ to the stimulus (c.f. Kohonen, 1977). Although this recall algorithm is
not based on a notion of consistency, it does use all of the information in the
experience set rather than being limited to what has been leamed about the
relations between observed and target features. The difficulty, for our purposes,
is that there is no apparent way to incorporate the unobserved state effectively.
Suppose, for example, that “‘0°” is used to indicate the unobserved state and that
each feature has value 1 or 2. Then because of the distortion of patterns by the
unobserved state, the span of the experience set will approach the entire space.
For example, every feature may eventually be observed in isolation of all other
features, at which time the experience set spans the entire feature space, and the
projection operation returns the stimulus unaltered. Kohonen calls an experience
set a set of samples and a stimulus a key. The point of view taken in this article is
that the samples and the keys are of the exact same nature.)

I turn now to a discussion of the local algorithm, the appropriateness of which
determines the accuracy of the proposed recall mechanism. The purpose of the
local algorithm is to compute an opinion of the true value of an unobserved
feature, given the values of a collection of observed features. The “‘strength’” of
this opinion should reflect the strength of the evidence available for this opinion.

Let us consider the nature of the information available in the collection of
observed features. For this purpose it is useful to make a distinction between
what I call implicit and explicit information. Consider a Venn diagram in which
the regions are defined by particular features taking particular values. A point in
this diagram can be thought of as a particular stimulus. (For the circles world,
introduced in Section 9.1, the unit torus can serve as the Venn diagram when the
circles associated with the collection of features have been drawn in.) Suppose
that the observed features are f; and f;., and that these observations define,
respectively, the regions A and B in the Venn diagram. These observations
contain, implicitly, the information that the stimulus is within A N B. However
unless there is a third observed feature, f;., such that a particular value of this
feature indicates, precisely, the region A N B, this information is not explicitly
available (unless, of course, it should happen that A C B or B C A). The point is
this: It is a practical limitation that the great majority of such information can
only be available implicitly for a feature set of any appreciable size. If there are
only 100 features in the circles world, then there are potentially 319 (> 10%7)
such regions, and even the human brain could not possibly have available an
explicit representation for every such region. (This widely appreciated limitation
is the focal point for the discussion in the next section.)

In the example we are given an observation of f; and f;-, and we wish to
estimate the value of some unobserved feature, say f;. The message from the
previous paragraph is that we cannot reason that the stimulus is in A N B and
then ask for the most likely value of f; because such information will in general
not be explicitly available. We must somehow combine the separate information
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contained in the statements ‘‘stimulus in A’ and ‘‘stimulus in B.’’ In other
words the problem is one of properly combining the information contained indi-
vidually in each of the observed features (such as f;) concerning the value of a
particular unobserved feature (such as f;). Presumably this information is gained
from joint observations of features f; and f; in the past; that is, evidence concern-
ing the relation between features f; and f; is gained each time these features are
simultaneously observed, and probably not otherwise. ‘‘Probably not otherwise’’
in part reflects the assumption that there is no information in the fact of the
unobserved states and in part reflects the assumption that a filled-in feature is not
treated as an observed feature with respect to learning. (The value filled in for an
unobserved feature is based entirely on the experience of the system and, as such,
contains no new information concerning the relation between f; and f.)

The local algorithm chooses a value for f; given observations, say, of f; and
Ji-- On what basis can a *‘rational’” choice be made? It should be emphasized that
conventional statistical approaches have very little to offer in the present context.
Either a Bayesian or a maximum likelihood estimator would require a knowledge
of the joint conditional distribution of f; and f;., given f;. But as I have argued
earlier, we must for practical reasons assume that higher-order information of
this type is not explicitly available. This joint condition distribution could be
reduced to a product of individual conditional probabilities with an assumption of
conditional independence, but there is no reason for believing that this is even
approximately true. (Certainly it is not true, for example, in the circles world.) It
should also be recognized that even a knowledge of individual conditional prob-
abilities cannot be assumed because we are interested here in estimation based on
finite (and typically ‘‘small’’) samples. On the other hand, the optimal
(minimum expected error rate) local decision function (based on pairwise obser-
vations) could be implemented if there were available a completely specified
prior distribution for the Bayesian model developed in the previous section. This
would in fact eliminate the motivation for a recursive scheme, the optimal deci-
sion being made by a direct application of the local algorithm to the target
features. But it would be difficult indeed to argue for any such completely
specified prior distribution.

The strategy that I take in developing a local algorithm is to assume first
(temporarily) a complete knowledge of all pairwise statistics among features.
Even then a ‘‘best’” decision function is not defined—again because of an in-
complete specification of the prior distribution. I argue instead for a particular
decision function by virtue of its satisfying certain ‘‘commonsense’’ constraints
on its general form. I then move to an approximation of this algorithm when
given only partial knowledge of the relevant second-order statistics.

Concerning f; and f;, we can, at best, have available a complete description of
the joint statistics of these two random variables. Let us say, for definiteness, that
each feature, f;, can have values + or —, as in the circles world. Then the most
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complete possible information is summarized by the joint probability distribution
function

P(fiza'.fj=b)9

and this information would be available after an infinite number of Joint observa-
tions of f; and f;. Let us suppose, for the time being, that all joint distributions
are in fact known and ask by what function of these distributions would we obtain
a local opinion for the value of an unobserved feature, f;. Let O; represent the
strength of the conviction that f; = +. Because f; is binary, it will be enough to
specify a means for computing O;. Think of + « as representing the strongest
possible conviction and — « as representing the weakest possible conviction
(i-e., the strongest possible conviction that f; = —). Suppose it is observed that
fi = +. It is evident that the following ‘‘boundary conditions’’ should be in
force: If P (f; = +|f; = +) = 1, then O; is maximal, that is, O; = + o; if P
(i = +[fi = +) = 0, then O; = — o, (we know that f; = —); if P (f; = +|f;
= +) = 1, then the observation f; = + does not contribute to O 5

Before writing down an expression for computing O;, which respects these
boundary conditions, I need to introduce some new notation. Concerning a
feature f;, a ““+’’ will be thought of as signaling the presence of an associated
event whereas ‘‘—’’ will signal its absence. For each feature, two new variables,
y: and n;, are defined by =

_{ 1 if f; = +,
Y% =10 iff = — orf is unobserved:;

a= +or —, b=+ or —;

ni={1 1fﬁ=_’

if f; = + or f; is unobserved.

In words: y; indicates that the event associated with f; is present (yes-activity);
n; indicates that this event is absent (no-activity). If both y; and #; are 0, then the
ith feature is unobserved. Finally, for any pair, i and j, let rf = P(f; = +|f; = +)
and let rg = P(f; = —|fi = +).

Given complete second-order statistics, one possible functional form for O;
that is consistent with the preceding discussion is

o -5 urs(rr)
P e T
1 L 1 n
Sl 21 yi log (1—-rd) + 1 ; y; log (1-r5) 9-1)

I

where m = (# observed events) = (# features observed to have value +) =

n
z Yi-
i=1
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The purpose of the factor 1/m is to adjust for the effect on O; of merely
observing more events—which, in itself, should not provide evidence toward the
true value of f;. Thus (9-1) describes a procedure by which all observed events
are ‘“‘polled’” and two sets of averaged opinions are computed: the opinion that f;

= + and the opinion that f; = —. The conclusion, O}, is the difference between
these. Notice that any observed event can itself determine the value of O; by
implying with certainty, f; = + or f; = —. Given a threshold 7, the local

algorithm chooses f; = +if 0; > T, f; = — if O; < —T, and does not fill in at j
if |0;} < T.

Notice that only those observed features with value + (the observed events)
contribute to O;. This asymmetry in the treatment of present versus absent events
is mostly for convenience: It allows us to use the present notation without
modification to describe temporal recall (first discussed in Section 9.6). There
need not be any loss of generality because we can always introduce a new feature
such that **+°’ indicates the absence of the event associated with some f;.

It remains to define the local algorithm for finite experience. Here, of course,
the numbers P(f; = +|f; = +) and P(f; = —|fi = +) are not available. How-
ever we may have available functions rj (¢) and r3 (¢) (¢ being time) that will,
eventually, approximate these conditional probabilities. In this case, O; can still
be computed from Eq. (9-1), with r§ and rj replaced by r§ (f) and rj (z),
respectively.

For r# (¢), an obvious choice is

(# simultaneous observations of y; = 1 and y;
r§ (1) = (# simultaneous observations of y; = 1 and y;
(# simultaneous observations of y; = 1 and n;

1 up to time ¢)
1 up to time 1) +
1 up to time ¢)

and a similar expression for rj (¢#) would replace y; = 1 by n; = 1 in the nu-
merator. But, for our purposes, these sample estimators suffer a serious flaw.
Suppose, for example, that for some i we have so far observed f; and f; simul-
taneously only once. Then either r} (r) or r; (¢) will be 1, and in any future ob-
servation of f;, the computation of O; will be dominated by the ith term in one of
the summations of (9-1).

Intuitively, the opinion of a feature f; concerning the value of a feature f;
should be weighed against how often f; and f; have been observed simultaneously.
How experienced is the opinion? If there have been very few joint observations,
then the ith terms in (9-1) should not contribute heavily to the computation of
O;. We seek functions r# (r) and rj (¢) that have the two properties:

Lori(—=Pf;=+fi=+)andrj ()= P(f;= —|f; = +)ast—,;and
2. ri () and ry; () are small when the number of simultaneous observations
of f; and f; are small.
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Notice that the second property would insure that the contribution to O, by
“‘inexperienced features’’ is small. One way to achieve these properties is
through a realization of the following differential equations:

pers r§ = €n; + y) (n + y)yi(y; — r)

and

4
dt

5 = €+ 3) (5 + y)yi(ny — r). (-2)

€ is a small parameter that contributes to the stability of the functions r§ and rg.
The factor (n; + y;) (n; + yy), which appeafs in each equation, is 1 when f; and
J; are observed simultaneously and 0 otherwise. Modification, then, only occurs
when f; and f; are observed simultaneously.

The equations in (9-2) are examples of a class of random equations that can
be well approximated (for all time te[0, %) by a simpler, deterministic, system,
provided that the sequence of stimuli satisfy a mixing (ergodiclike) assumption
(see Geman (1979)). The deterministic system associated with (9-2) is

L5 = <lELn + %) (n + 3] -
El(n; & y) (n; + y)y:rs}

d
- ri = elEl(n; + ) (n; + yyin;] —
El(n; + y;) (n; + y)yilrg} 9-3)

where E means expected value. The smaller ¢ is, the better the approximation.
Recall now the assumption of independence of the states (observed vs. unob-
served) and values (+ or —) of features. One implication is that

E[(n; +y) (5 + y)yp;] = pP(fi = + and f, = +),

E[(n; + y) (0 + y)yims] = pP(f; = + and f; = —),
and

E[(n; + y) (n; + yyi] = pP(f; = +)

where, for short, I have let p stand for the probability of simultaneously observing
Ji and f;. Hence, (9-3) can be written as

d

Ir§=ep[P(fi=+ and f; = +) — P(f; = +)r]

LT @PGi=+ md f =) - PG = D, ©o4)
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which has as solution
r§(t) = P(f; = Hfi = +) [1 — exp (—@pP(f; = +)1)]
rg() = P(f; = —|fi = +) [1 — exp (—eP(f; = +)1)]. (9-5)

The result is intuitive: 73} (¢) is asymptotically close to P(f; = +|f; = +), and the
rate of approach is faster the more frequently that f; = + and the more frequently
that f; and f; are observed simultaneously. Notice then that a realization of (9-2)
achieves, approximately, properties 1 and 2. [If the values of features are nor
independent of the states of features, then the asymptote is P(y; = ]y; = 1 and
Jf; observed) with rate constant 1/€ P(y; = 1 and f; observed).]

In summary I interpret ‘‘associative learning’’ to be a process by which
information is gained about pairwise statistics among features. In recall this
information is used to evaluate both the opinion of a particular decided feature
about the value of an undecided feature, and the experience of that opinion.
Necessarily, then, two pieces of information must be acquired in the learning
process. In the design proposed here, the two parameters rf; (¢) and rj (t) contain
the necessary information. Thus:

Proposition 5. Associative learning is a process of gaining pairwise statistics
among features. This information is utilized in associative recall to evaluate both
the opinion of a particular decided feature and the experience behind that opin-
ion. The net opinion about an undecided feature is influenced more by more
experienced features.

9.4. A SECOND FORM OF LEARNING: DEVELOPMENT
OF HIGH-ORDER FEATURES.

How effectively does the proposed process for recall estimate values of target
features? The main limitations seem to be the absence of explicit representations
for potentially important high-order statistics. Using the Venn diagram intro-
duced earlier, we suppose that f; = + and f;, = + indicate regions 4 and B,
respectively. Suppose further that A N B is not explicitly available in the sense of
the discussion of the previous section. It may be that for some feature J:

P(f;=+|fi=+) isnearlyl,
Pfi=+|fr =+ is nearly 1, but
P(fi=+|fi=+ and f. =+) isO.
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Eventually the recall algorithm choses f; = + whenever the observation is f; =
+ and f;; = +. There is as yet no mechanism by which this error will be
corrected.

The problem is a familiar one in statistics. In regression, for example, an
equation involving only linear combinations of the independent variables is
sometimes inadequate. The addition of variables that are themselves higher-order
functions of the independent variables may considerably improve the perfor-
mance of the equation. Loosely speaking, in the foregoing example we are
attempting to regress the value of the feature f; onto those of the features fiand
fi. Another way of saying that we do not have explicitly available A N B is to
say that second-order functions in the features f; and fi are not available. Or
perhaps a closer analogy is to the pattern classification problem, if we think of f;
as representing a binary classification. A decision surface derived only from joint
statistics between the classification and the individual features proves to be a
poor classifier. It is often necessary to make explicit use of higher-order statistics
among the features.

I take it for granted that:

Proposition 6. In processing information the nervous system makes explicit
use of statistics that are of high order in the most primitive features.

Recall the notation introduced in the previous section: ¥; = 1 indicates the
observation f; = +, and n; = 1 indicates the observation fi = —. Because we
can always introduce new features in which the roles of the values + and — have
been interchanged, I can without loss of generality assume that the important
information is contained in the observations of the random variables Yo, i =1,
2,..., n). Then, an explicir representation of all potentially available (and im-
portant) information is equivalent to having a realization of every function of the
form

2= Yy, Yy, (9-6)

where 1 < k < nand 1 < i; < n for each j. In words, an explicit representation
of all important information requires the indicator functions of intersections of
arbitrary collections of the regions defined byy;=1,(i=1,2,..., n).

It is completely clear that all functions of the form (9-6) cannot be explicitly
represented. The number of such functions is enormous in any but the most trivial
examples. There are at least two obvious criteria that an indicator function of this
type should satisfy before any *‘machinery’” is committed to its explicit repre-
sentation. One is frequency of occurrence. If an event never occurs there is
certainly no purpose in developing for it an explicit representation. It may hap-
pen, for example, that the intersection of the sets defined by fi = +and f; = +
is empty, in which case f; = + and fi+ = + will never occur simultaneously.
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Everything else being equal, the events that are represented should be those
occurring most frequently. But it is also true that some events are more important
than others, and the statistics associated with such events should be given some
measure of preference in committing the available machinery. More will be said
later about what makes an event ‘‘important,’’ but roughly what I mean is that
certain events have associated with them a “‘hard-wired’’ value—they are pain-
ful or pleasurable; they may satisfy a particular need; etc. A possible example of
such an event, relevant to the discussion found at the beginning of this section, is
“‘prediction error’’; it would be natural to assign to this occurrence a (negative)
hard-wired value. Such events are specified by the direction primitives referred
to in the introduction, and discussed in more detail in the final section, Section
9.6. The point to be made here is that events that are better correlated with
important events should be better represented. Thus the event A N B (introduced
earlier in this section) would be given some priority as a candidate for explicit
representation by virtue of its likely correlation with prediction errors.

These considerations suggest a second form of plasticity, one which is distinct,
at least in purpose, from the associative-type modification postulated in the
previous section. The purpose of this second form of plasticity is to commit
machinery (perhaps cells or functionally grouped collections of cells) to the
representation of statistics that are of increasingly high order. It is a common idea
that such a process exists in the nervous system, and that, in a hierarchical
fashion, units so-far committed form the ‘‘primitives’’ for the commitment of
still higher-level units. I propose, in addition, that this process is biased towards
more frequent and more ‘‘important’’ statistics, thus:

Proposition 7. There is a form of plasticity whose purpose is the commitment
of neural machinery to the representation of high-order statistics. Successive
levels in a hierarchy commit themselves to joint statistics among previously
committed units of lower levels. At every level of the hierarchy commitment is to
those statistics that are, by some measure, most frequent and most important. A
statistic’s ‘‘importance’” is its correlation to important events, and these are
innately defined.

Thus *‘importance’’ acts something like a ‘‘now print’’ (see Livingston, 1967),
nonspecifically overweighting those statistics with which it is associated.

The hypothesis is that the commitment is hierarchical, not only in the sense
that increasingly higher-order statistics become represented, but, as well, in the
sense that the statistics of one stage form the substrates for the statistics at the
next stage. One could imagine a hierarchy in which every stage drew solely from
the first stage, seeking increasingly higher-order statistics. However in order to
preserve the possibility of commitment to any statistic of a given order, one would
need an unimaginably rich initial connectivity between the highest levels and the
first level. The successive scheme suggested here avoids this difficulty but not
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without a price. Successive commitment limits the repertoire of a given level by
what has already been chosen in the previous levels.

For definiteness, I outline the method of commitment used in our simulations,
but I do not mean to suggest that this method is in any sense physiological. The
assumption here is that the resulr of commitment is to create a representation of
those statistics that are a combination of frequent and important. No assumption
is intended about the specific mechanism by which this may be accomplished in
the nervous system. (The problem of identifying such a mechanism is closely
related to some interesting theoretical work by Bienenstock, 1980; Cooper,
Liberman, & Oja, 1979; and von der Malsburg, 1973.)

Think of features as being represented by units consisting of two nodes, a
yes-node and a no-node. Activity in the yes-node of the ith unit represents Vi =
1; activity in the corresponding no-node represents n; = 1. These units are
organized into a series of levels with, say, level 1 at the bottom, level 2 just
above this, and so on. (The levels do not necessarily have equal numbers of
units.) Initially only level 1 units are active and are participating in associative
learning and recall. Following a specified ‘critical period”” (defined as an a
priori fixed number of observations at level 1), level 2 units become active,
representing newly defined features, which henceforth participate in the associa-
tive processes. The result of this commitment is that the yes-node of a level 2 unit
signals an event of the form y; = | and y; = 1, where f; and f; are two features
represented in the first level. The corresponding no-node signals that either n; =
L or n; = 1 or both n; and n; are 1 (i.e., there is enough evidence to establish
that not both f; and f; are 1). Formally, the new feature, say fx, is defined by

Ye = Y1y, and ng =n; + n; — n; n;.

For each pair of yes nodes in level one, the number of times that these nodes
are simultaneously active is recorded. This number is augmented by the observed
correlation between such activity and activity in the direction (good/bad) primi-
tives referred to earlier. If level 2 has m units, then, at the end of the critical
period, these units are committed to a representation of the m pairs of level 1
units with the largest so-computed indexes. Following the commitment of level
2, over the next critical period, level 3 is committed using pairs of level 2 with
level 1 units. And then, level 4 commits, using pairs from level 2; and then level
5, using pairs of level 3 with level 2; and so on (see fig. 9.2)." For illustration,
imagine that every level has m units. Then at any given time, we are maintaining
a list of only order m? indexes, and this is perfectly manageable.

At all times all committed units participate in the processes of associative
learning and associative recall. Early in the experience of the system the lowest
levels of the committed units will dominate the associative recall process. This is
a result of the preference given to experienced units in the calculation of local
opinions, as discussed in Section 9.3. Later, higher-level units will exert the
greatest influence on recall. This derives from the fact that the yes-nodes as-
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FIG. 9.2. Example of units committed to high order relations. The first level 5
unit, initially inactive, now indicates the simultaneous occurrence of the events
associated with the first level 3 unit and the second level 2 unit (equivalently, the
simultaneous occurrence of the events associated with units 1,2,3,4, and 6 of level

1).

sociated with these units represent more selective events (viz. the intersections of
events associated with lower-level units), implying that the conditional prob-
abilities given activities in these yes-nodes will tend to be closer to 0 or 1.
Consequently, the associated r s will have asymptotic values that are also closer
to 0 or 1, and [by Eq. (9-1)] these coefficients will eventually dominate the
calculation of local opinions.

I pointed out in the introduction that this model is based on a compromise
between local and distributed representations of information. At the lowest (ear-
liest) levels of processing, a stimulus has a distributed representation; the activi-
ties of numerous units each signal the presence of a lower-order event contained
in the stimulus. At successive levels of processing the representation becomes
better localized; more selective units signal the presence of more complex com-
binations of events peculiar to the stimulus.

9.5 A SPATIAL CODING MODULE

The discussion so far has been of a model for representing, updating, and retriev-
ing information about those relations among features that may exist at a fixed
time. As of yet there is no mechanism in this model for processing temporal
relations among features. I call those relations that do not contain a temporal
component, spatial relations, and the machinery proposed for processing such
information a spatial coding module (SCM, for short). What I say about the
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processing of temporal information is closely patterned after the model for
processing spatial information. As an introduction to a temporal coding module,
as well as a summary of the model so far, this section briefly reviews the
proposed mechanisms for representing, learning, and recalling spatial relation-
ships.

The SCM consists of layers of possibly differing numbers of units. A unjt isa
pair of nodes: a yes-node and a no-node. Activity in a yes-node signals the
occurrence of an event, whereas activity in the corresponding no-node indicates
that the event has not occurred. Absence of activity in either node indicates that
the event is unobserved—it may or may not have occurred. Initially only the first
layer of units participates in information processing. These layer 1 units are
primitives of the SCM:; they represent the total information available to the
module. Layer 2 units become participants in SCM processing by committing to
the representation of a new feature over a specified critical period. As a result of
the commitment process activity in a yes-node of a layer 2 unit comes to signal
the simultaneous activity in two particular yes-nodes of layer 1. Call the units
associated with these two ves-nodes the “‘substrates™ of the layer 2 unit. The
no-node in this layer 2 unit signals activity in the no-node of at least one of the
substrate units. Layer 2 units commit to those pairs of units that, over the critical
period, are most frequently observed to have simultaneous activities in their
yes-nodes as well as being most highly correlated with activities in the direction
primitives. Over ensuing critical periods, layer 3 units commit to pairs consisting
of one layer 2 unit and one layer 1 unit; then layer 4 units commit to pairs of layer
2 units; then layer 5 units commit to pairs of one layer 3 unit and one layer 2 unit,
and so on. .

At all times, those units that are committed participate in the associative
learning and recall processes. Associative learning is the calculation of condi-
tional probabilities: Each yes-node in the module computes for every other node
in the module (excepting its no-node pair), the conditional probability of activity
in that node given that the corresponding unit is active (observed) and that the
yes-node itself is active,

Recall is a process of filling in yes-or-no activities at unobserved units.
Activity at any given unobserved unit can be filled in by examining the associa-
tions to the yes- and no-nodes of that unit from all active yes-nodes. Estimates of
the true value (yes or no) of a particular collection of unobserved units (target
units) are derived by a recursive process which repeatedly fills in all unobserved
units for which the active yes-nodes (observed plus filled-in) strongly suggest a
value. The process terminates when all target units are filled in.

Before closing this section, it may be worthwhile to anticipate some of the
discussion of Section 9.7, on a control module. Evidently, mechanisms must be
developed for the execution of such activities as choosing target units, setting a
threshold for the determination of which units are filled in at a particular step in
the recall process, deciding when the SCM should be in “‘recall mode " and when
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t should be learning associations and committing new units, etc. It is the status
»f these decisions—decisions that control the activity of the SCM—that form the
srimitives (level 1 units) for the control module. In the design that I later propose
he control module processes the activities associated with these primitives in
much the same way as the SCM processes the activities that signal events in its
environment.

9.6. A TEMPORAL CODING MODULE

I make a distinction between two types of memories, those that associate events
<hat tend to occur simultaneously and those that associate events that tend to
occur in sequence. Although this separation is largely artificial, it is a useful
idealization, and it can be expected to suggest mechanisms that recognize the
continuum between ‘‘spatial’’ and “‘temporal”’ information. Imagine that time is
discrete and that a stimulus occurs at each instant. Stimuli are represented exactly
as before: a set of values composing 2 feature vector with explicit account taken
for observed versus unobserved states.

The purpose of the “temporal coding module”’ (TCM) is to learn, and be able
to recall, temporal relations that may exist among the features. The design
principles are those of the spatial coding module: the commitment of machinery
to high-order statistics, the learning of second-order statistics (conditional prob-

abilities) between nodes, the reconstruction of events by a local filling-in process ~

together with a global recursion process. Given these parallels, and given the
detail with which the SCM has been described, an outline of the TCM design will
substitute for a complete description.

The nature of the information processed by a TCM is determined by the
primitives for the module. As with the SCM these primitives are the layer | units,
each of which consists of 2 nodes having the same interpretation as in the SCM.
Following the previous development, we think of primitive only as relative to the
rest of the module. Primitive may refer to the detection of a particular frequency
or of a particular type of transition in an auditory signal, or an entire word or even
phrase may be primitive. A primitive may be a top-level unit of an SCM or of
another TCM.

In analogy to the need for an explicit representation of high-order spatial
statistics, there is a need here for an explicit representation of high-order tem-
poral statistics. The reasoning is the same: It would appear that learning is the
computation of second-order relations—relations among pairs. If neither of these
pairs is itself of higher order than the primitives, then the organism ignores
forever high-order statistics, and it is obvious that the behavior of the nervous
system is not merely 2 function of second-order relationships. In the SCM, with
binary features, ‘‘high order™ referred to the intersection of a collection of
features. Activity in a yes-node of a level 2 unit represented the simultaneous
occurrence of activities in the yes-nodes of two level one units. The analog for
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the TCM is the hierarchical representation of permutations of pairs of lower-
Jevel units. Hence, a yes-node in the second level will come to indicate the
completion of a sequence of activities in two consecutive yes-nodes in level 1.
For example, a level 2 unit may have as substrate the (i, j) ordered pair of level 1
units. If activity in the i unit yes-node is followed immediately by activity in the j
unit yes-node, then.the yes-node in this level 2 unit is activated. (In our simula-
tions, the timing is defined such that this level 2 unit is active simultaneously
with the completion of the pair, i.e., the level 2 activity coincides with the
activity in the second member of the level 1 pair.) If either the i level 1 unit
no-node was active at the previous time or the j level 1 unit no-node is currently
active, then the no-node in this level 2 unit is currently active. Any other se-
quence of (i, j) level 1 unit activities produces no activity (unobserved state) in
this level 2 unit. Level 3 units represent permutations of level 2 foilowed by level
1 units; level 4 units represent permutations of pairs of level 2 units; level 5 units
represent permutations of level 3 followed by level 2 units; and so on. (Activity
in a level p unit is said to follow activity in a level g unit if it occurs during the
pth period of time after activity in the level g unit. In other words, the sequence
of primitives associated with the level ¢ unit must immediately precede the
sequence of primitives associated with the level p unit.)

We are again faced with the problem of selecting a small fraction of all
possible statistics of a given order to which we will commit machinery. The
solution, for the TCM, is the same as for the SCM. Levels commit following
successive critical periods, and commitment is to those permutations most fre-
quently observed and most highly correlated with activities in the direction
primitives. Eventually activity in the yes-node of a unit in the kth level signals
the completion of a particular sequence of k level 1 yes-node activites.

Associative learning in the TCM is by the same mechanism as in the SCM,
except that the rys update when activity in one unit ‘‘follows’” (recall definition)
yes-node activity in another unit rather than when activities occur simultane-
ously. Asymptotically, ri(rj) approximates (in the sense discussed in Section
9.3) the probability that activity in the yes- (no-) node at j follows activity in the
yes-node at i, given that activity at j is observed.

From the collection of activities in a particular set of units in a TCM, an
ensuing sequence is predicted using a mechanism similar to the filling-in process
proposed for the SCM. The TCM first chooses that yes-node whose activity is
most strongly suggested by the activities present in the network. The decision
function for this choice is exactly the one used in the SCM, and I would support
its appropriateness by the arguments used there. After a node is chosen the values
of all other units are recomputed just as though the sequence of primitives
associated with the chosen unit had been observed, and from here the prediction
process can continue.

As in the discussion of an SCM, it is worth noting here that a set of primitives
of a control (versus environmental) nature have been implicitly defined. These
primitives determine the depth of a temporal prediction, perhaps the level from
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which the filled-in unit is drawn, perhaps which other modules should influence
the prediction, and certainly when such a prediction should be attempted. It is
primitives such as these that comprise level 1 of the control module.

9.7 INTEGRATION

Temporal and spatial coding modules can be integerated, in a parallel or hierar-
chical structure, without modification of the mechanisms so far hypothesized. A
parallel structure requires a degree of connectivity which will permit the state (set
of active units) of one module to influence the local prediction (filling-in) process
in the other. A spatial-to-temporal connection associates by the rules of the
TCM, computing, asymptotically, the conditional probability that the TCM node
““follows’” (as defined in Section 9.6) the SCM node, given that the TCM unit is
observed. A temporal-to-spatial-type connection associates by the concurrence
rule used in the SCM and is asymptotically equal to the conditional probability of
the SCM node being active, given that the TCM node is active and that the SCM
unit is observed. Of course, full connectivity between modules is, at some point,
not practical. Given a constraint on connectivity, it would be natural to use the
more selective, and presumably more informative, higher-level units from a
given module for communication to another module. A hierarchical structure can
be achieved by taking as primitives, for one module, the top-level units of one or
several other modules. The processing of information through such a network is
well defined whatever the identities (spatial or temporal) of the individual
modules. It is the availability of this hierarchy, a hierarchy that demands no new
principles of architecture or function, which I believe justifies the notion of
feature as it is introduced in Section 9.2, and used throughout this chapter.

Yet the design remains that of an “‘open’’ system. There is no mechanism for
determining when an SCM begins a recall process, or what threshold is used
during this process, or to what depth a TCM search should go. These control-
type decisions can be organized by a logical structure that is very much akin to
the structures proposed for temporal and spatial coding. Let us represent each
available control activity by a unit of the type used in the TCM and SCM.
Yes-node activity means that the corresponding action is being executed. For
example, such activity may initiate the associative selection of a unit in a particu-
lar level of a particular TCM, or the setting of a recall threshold to ‘‘high’’ in a
particular SCM. I assume that these primitive actions have their analog in the
nervous system:

Proposition 8. There is a special class of motor primitives (control primi-
tives) whose activities effect changes in the state of neural machinery.

The control module is a layered network of units in which these primitives
form the first row. Its purpose is to learn to choose actions that are ‘‘appropriate’’
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given the current available information concerning the state of the environment
and the state of the network it controls. The principles of operation are analogous
to those for the SCM or TCM, with choosing the ‘“‘next move ' (or next sequence
of moves) playing the role of filling-in in the SCM or predicting in the TCM.

In the control module, as in the SCM and the TCM, higher-level units come to
represent sequences or combinations of level 1 primitives. The argument for the
existence of such units is much the same: It is obvious that explicit account must
be taken of high-order relations in the control primitives, and it would seem thata
local representation of such relations is necessary if it is the connections between
pairs of units that ultimately determine how we get from a currently active set of
units to a newly activated unit.

I have said that the control module operates in a manner much like the SCM
and the TCM. In particular the control module chooses a next move or sequence
of moves in a manner analogous to the fillin g-in or prediction process of the SCM
or TCM. The action of the control module, then, is largely determined by the
strengths of the rys associated with the various connections to its units. If it is the
purpose of the control module to choose "‘appropriate”’ actions, then we must
interpret the strengths of the r; coefficients in a way which is fundamentally
different from their interpretations in the SCM or TCM. In particular, Eq. (9-2)
can no longer apply to the updating of these coefficients. It is the control module
itself, using these coefficients, that determines the sequence of units which are
activated, and therefore these coefficients can not simply reflect the relative
frequency with which one node has followed another.

The missing ingredient is, of course, a definition of appropriate action. On
this point, even a superficial development could consume an entire article. In-
stead of attempting a proper defense for the way in which ‘‘appropriate action’’ is
defined here, I am simply describing its functional realization in the control
module and hope that the reader will not find this realization unituitive.

The notion of appropriate action is based on a special class of primitives
(direction primitives) whose activities, through their influence on the control
module, ultimately determine the direction of the network. These premitives
model those inputs that can be interpreted as having an inherently good or bad
meaning to the nervous system. In the system, good or bad meaning is defined
operationally; it is the effect of activity in a unit representing a direction primitive
that determines the extent to which that primitive is good or bad. Other inputs
will come to have good or bad value by virtue of their associations with activities
in these units, but the development of such associations requires no new
mechanisms; they result from the modification of coupling coefficients situated
between SCM, TCM, or control module units and those units representing direc-
tion primitives; to summarize:

Proposition 9. There is a special class of primitives (direction primitives)
that, by virtue of their influence on leamning (commitment and associative), can
be thought of as having positive or negative meaning to the nervous system.
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The particular primitives employed depend on the particular application. Some
direction primitives for the numbers world simulation were mentioned in the
introduction. Presumably such things as hunger, pain, and perhaps joy, compan-
lonship, and the like play the roles of direction primitives for people. (Here, of
course, it would be nearly impossible to distinguish what is truly a primitive from
what has been associated with a primitive.)

The influence of activity in the direction primitives on the commitment pro-
cess in SCMs and TCMs has already been described. Activities in direction
primitives are also responsible for the development of the coupling coefficients
of the control module (i.e., all r;; for which j represents a unit of the control
module). Roughly, if the unit i has been ‘‘followed’’ (recall the definition given
in Section 9.6) by the unit j, and if there is net positive activity in the set of
direction primitives, then r; is incremented upward and rj incremented down-
ward. If net activity in the direction primitives is negatie, then movement of
the coupling coefficients is in the opposite direction.

Proposition 10. In networks of control features (features that derive from
control primitives) associative learning is determined by activity in direction
primitives rather than by observed correlation. Positive activity reinforces cur-
rently active associations; negative activity reinforces the negative of currently
active associations.

The actual equations are such that the ry;s remain always between 0 and 1, so that
the local decision function, Eq. (9-1), still makes sense. The control module
chooses a next move by looking ahead some fixed number of iterations (which
number may itself be a control primitive) and evaluating the expected positive or
negative consequences of a given sequence. ‘‘Looking ahead’’ means choosing
potential paths by the TCM procedure, governed by the rs (i may refer to a unit
in any of the three types of modules). ‘‘Evaluating’’ means taking a certain
average of the associations with direction primitives over the units in a particular
path.

Proposition 11. Networks of control features activate new features by a
combination of filling-in (guided by connectivities) and a bias towards features
strongly associated with positive activity in direction primitives.

The details are not important. What should be emphasized is the position that
declarative and procedural knowledge have essentially the same representation.?
The structure envisioned for temporal and spatial coding of the environment
applies to the problem of organizing an appropriate direction for the network as a

3For a good discussion of this issue and an example of 2 model based on the opposite proposition,
see Anderson (1976).
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whole. Thus units are successively committed to the representation of more and
more complex actions, and the choice of new actions is driven by coefficients
containing information about the significance of pairwise activities in these units.

My approach has demanded a strict separation of the notions of temporal -and
spatial associations, a binary notion of feature, and a rigid definition of temporal
ordering. The adyantage is that the logic of the processing is largely accessible.
We can be reasonably sure that certain stability problems are avoided and that the
architecture truly lends itself to a hierarchy, that ‘‘more is better.’’ But the
approach is severely restrictive. There are few environments that respect these
conditions of regularity. The approach taken here is based on the expectation that
the right generalizations will come from models sufficiently idealized to permit
thorough analysis and simulation.
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